 [image: image1.png]

 InBase, Inc.

What Does a DBA Do?

 by Randy Weis
One may ask, in fact one often asks "What does a DBA do?" That is a good question, I'll try to do the impossible by defining what a DBA does. As one person said, "it's a combination of a science and an art." The following is a list of activities that a DBA performs. The activities are not necessarily in chronological order because the process is often more iterative. However, I will attempt to order the them in a logical manner.

PLANNING ACTIVITIES

· Understand the business. This is so that we can communicate well with the business analysts and the application designers. It is also important to know how the business uses the data, so that we can define and optimize the system appropriately.

· Estimate Projects. We normally estimate DBA involvement in a project one of two ways. Either by a percent (15%) of the overall project, or by a factor applied to an estimate of tables (8 hours per table up to construction).

In some projects, an architect hands the DBA a set of table and column definitions and tells him/her to create the tables. In this case, a good DBA will still perform reasonableness checks against model, before creating any objects. This could reduce the time involved getting to construction. Depending on the skills of the architect, and the stability of the scope and the model, the DBAs may spend more time during the construction phase making changes to the database. It takes much longer to change a database, as compared to just adding new columns. It also takes much longer to tune a poorly tuned database because it may involve redesigning portions of the database, or moreover, redesigning an application.

See the section near the end of this document to find ways to reduce the DBA effort.

DESIGN ACTIVITIES

· Attend JAD or Analysis Sessions. This helps us better understand the business processes and some of the access requirements. In addition, we may be called on to create tables to be used in a prototype or JAD. Reviewing the screens from a JAD or prototype can be a good indicator of what the system will evolve into.

· Review the Logical Data Model. We review each and every entity, attribute and relationship. We look for completeness and validate the normalization. We check the data types, column lengths, optionality and cardinality. We validate relationships because relationships will likely turn into Foreign Keys in DB2.

· Validate or modify the model to conform to standards. Verify naming conventions; apply abbreviations (because DB2 column name length is limited to 18 characters); verify the naming node conventions (e.g. the domain type... Code, Date, Desc... is the last node of a column name... STATE_CODE , POLICY_EFF_DATE); and validate the nullability of columns (e.g. spaces may be an acceptable null indicator)

· Review the volumetrics. We look at entity occurrence and data access volumetrics. In analysis and design we use these metrics to help predict performance problems, we also use this to help validate the cardinality of related entities. We will use this information to decide whether or not to use DBMS partitioning. We may determine that a database needs to be distributed (because the single CPU may not have the horsepower, or the network may not have the bandwidth, to process all of the transactions). In production preparation we use these to calculate DASD and CPU requirements, and tablespace and index sizes.

· Review the access paths. This helps us determine what indexes need to be created. It may also highlight other areas that may benefit from some form of denormalization (e.g. redundant data, aggregates, collapsing or splitting of tables). We may review pseudo code, SQL, screen prints and design documents.

· Review availability requirements. Some systems have unique availability requirements. For example: Some systems may want 24 x 7 availability, therefore we need to use a combination of technology and application design approaches to accomplish this; and another group may want to be able to recover to a point in time without affecting other areas; and some other group may have special long term history requirements that need to be included in a design.

· Attempt to predict performance problems. Model transaction activity using real "Proof of Concept" (POC) techniques, or by using modeling tools (e.g. DB2Estimator). We include the volumetrics with the table design and the access paths to help predict.

· Recommend denormalization or application design techniques. Some RDBMS performance problems can be handled transparently from the developer, such as adding indexes or segregating tables across different volumes / channels. However, some problems made need to take an approach that affects the application design. We may add redundant data and aggregates to tables; we may collapse or split tables to help reduce physical I/O). Some highly normalized models would force about 15 reads just to get a name and address. I also assume that there will be some kind of name search, which could easily cause hundreds of reads. We will likely create a denormalized shadow table to enhance the performance of these processes. Additionally, we may recommend the use of dynamic SQL for some specialized (similar to ad-hoc) data access.

· General Application Support. DBAs are in a unique position because they need to understand both the business and the backbone technologies. As a result, the DBAs often work as liaisons between applications and the supporting technical groups. We often get involved in other areas of design.

PRE-CONSTRUCTION ACTIVITIES

· Request Hardware / Software. Request CPU, DASD and other hardware for testing; give a "heads up" for production requirements. Assist in reviewing, recommending and configuring any special software (e.g. replicators, monitors, generators).

· Create Database Objects. Databases, Storage Groups, Tablespaces (& Containers), Tables, Primary and Foreign Keys, Indexes, Views. First we create the Data Definition Language (DDL), then we generate the objects.

· Create code tables, and assist in the loading of preexisting values.

· Create these objects for Prototyping, and later create them for the actual development environment.

· Create some level of backup procedure for the test environment, if required.

CONSTRUCTION SUPPORT ACTIVITIES

· Review Program Code. We may be requested to perform code reviews. We look for standards, SQL syntax, validate predicates (especially for joins), proper commit frequencies, and common SQL error handling. During the review, we often spot logic errors... because we're sooo good.

· SQL. Assist the developers in writing SQL; compiling and binding their programs.

· Interface. Assist with interface issues.

· Tune and Tweak the Database. Using monitors and database Explains we will detect and diagnose performance problems. We will add indexes, recommend buffering changes, change locking strategies and recommend application design or SQL changes.

· Size the integration test and production databases.

· Create databases for integration and systems tests.

· Create / Update Utilities. Create backup, recovery and reorg procedures for test systems.

PREPARE FOR PRODUCTION ENVIRONMENT

· Estimate Resources. Help the Resource Management Group with DASD and CPU estimating for production.

· Create / Update Utilities. Create backup, recovery and reorg procedures.

· Conversion. Assist with conversion plans and issues.

· Roll. Prepare a production roll plan.

· Create Database Objects in Production.. Databases, Storage Groups, Tablespaces (& Containers), Tables, Primary and Foreign Keys, Indexes, Views. First we create the Data Definition Language (DDL), the we generate the objects.

· Full Volume Test. Perform a full volume conversion test. Attempt to parallel test.

· Security. Prepare for, and request special file (ACF2 (RACF, Top Secret), UPM) access for DB2 objects (e.g. Image Copy Files, Logs, etc.). Define proper DB2 authorizations for data access and other roles.

PRODUCTION ROLL

· Load Tables. Help with DBMS Load Utilities.

· Cat Stats. Apply "best guess" catalog stats, so that the DBMS Bind Optimizer chooses a good access path for its initial binds

· Binds. Assist with any Precompile or Bind issues.

· Space. Monitor Space usage during loads.

· Runstats. Run new Runstats for large tables that were just loaded.

· Rebind. Rerun some binds to choose new access paths

PRODUCTION SUPPORT

· Monitor and Tune the database. Add indexes, recommend application and SQL changes and schedule reorgs and runstats.

· On-Call. Be on-call to assist with database failures, application failures, recoveries and enhancement rolls. This can happen at any time of the day or night.

· Disaster Recovery Plan. Prepare backup and recovery utilities. Maintain the Disaster Recovery Plan. Participate in the DRP test. And... hopefully, never have to actually implement a real disaster plan, but you better be prepared, just in case.

How can you reduce the time needed by the DBA?

· Get good volumetric and access path estimates early.

· Gather requirements well!

· Document entities and attributes well. This reduces both DBA the LDM time reviewing design decisions that were made long ago.

· Provide a good first cut denormalized data model.

· Don't argue much with suggestions. At times, we recommend actions based on prior experience, and sometimes it just takes longer to document, analyze alternatives, prove and perform a POC, than it does just to implement the change. We don't mind a challenge, but pick your battles carefully.

· Do not change the scope!!! Scope creep is often the killer of many projects.

· Do not change the underlying data model much. It takes much more time to change a DB2 object, than it does to add an object. It is often hard to change and add relationships.

· Limit the scope. The analysis for an enterprise wide consolidated database would take much longer because we need to gather and analyze volumetrics and access paths of all potential business lines and profit centers, and we would likely have to make more changes because of the higher volumes, access requirements and availability requirements. If we can limit the scope, we can spend less time analyzing and denormalizing, and we will not need to have to concern ourselves with any special database distribution. A good rule, is to plan 18 - 24 months out.

Finally, this is a reminder that DBAs do take bribes. Cheesecake and Pizza can go a long way in getting the desired response from your DBA. Remember the DBA slogan "don't believe anybody, and always say "NO" first... unless, of course, they bring cheesecake!"

- Randy Weis

InBase, Inc.

 Copyright © 2000-2005 InBase, Inc.

630-205-0105

15 W. Meagan Ln. Lemont, IL 60439

Page 1

 randyw@inbaseinc.com

[image: image2.png]

_973453178

