PeopleSoft Tuning Summary

Highlights

1. Bufferpools – segregate; and increase sizes

2. Bind Parms - e.g release(deallocate)

3. Index analyses and usage . remove unneeded indexes

4. Changes to some views

5. Convert “Exists” to joins

6. Convert “Exists” to fetch loops or Cobol Programs

7. Separate Tables into Distinct Tablespaces

8. Use Unload/Load

9. Create smaller Temp Tables from recurring subselects on large tables. E.g. PS_ITEM

10. Compression

11. Freespace

12. Locksize Page/day ; table/batch

13. Segsize 64

14. Type 2 indexes

15. Preload Temp Tables, or fudge Stats in temp tables… 500-5000 rows/pages/nlevels

16. Reorgs

17. Uncommitted read - at special times

18. Gateway

19. DSNZPARMS

20. Checkpoint Freq – 20 min interval

21. Log Buffersizes

Details

1. BOUND RELEASE COMMIT to RELEASE DEALLOCATE

2. Used Platinum DETECTOR AND INDEX EXPERT

3. Bufferpools

4. UNLOAD/LOAD of credit and debit from PS_PENDING_ITEM

5. COMPRESSION

6. Changed some Views…

AFTER

 CREATE VIEW UFDW2DVL.PS_ITEM_DST_AR2_VW

(BUSINESS_UNIT, CUST_ID, ITEM, ITEM_LINE, SEQ_NBR, ACCOUNT, DEPTID,

PRODUCT,

 SUB_ACCOUNT, PROJECT_ID , AFFILIATE, STATISTICS_CODE,

 DST_LINE_NET_ITEM) AS

 SELECT D.BUSINESS_UNIT, D.CUST_ID, D.ITEM, D.ITEM_LINE, MIN(

(D.ITEM_SEQ_NUM * 1000) +

 D.DST_SEQ_NUM), D.ACCOUNT, D.DEPTID, D.PRODUCT, D.SUB_ACCOUNT,

D.PROJECT_ID,

 D.AFFILIATE, D.STATISTICS_CODE, SUM(D.FOREIGN_AMOUNT) FROM PS_ITEM_DST D

 , PS_ITEM_ACTIVITY

 A , PS_PENDING_ITEM I , PS_PGG_REQUEST_TAO R

 WHERE

 R.GROUP_BU = I.GROUP_BU AND R.GROUP_ID = I.GROUP_ID AND

 D.BUSINESS_UNIT = I.BUSINESS_UNIT AND D.CUST_ID = I.CUST_ID

 AND D.ITEM = I.ITEM AND D.ITEM_LINE = I.ITEM_LINE AND

 A.BUSINESS_UNIT = D.BUSINESS_UNIT AND A.CUST_ID = D.CUST_ID

 AND A.ITEM = D.ITEM AND A.ITEM_LINE = D.ITEM_LINE AND

 A.ITEM_SEQ_NUM = D.ITEM_SEQ_NUM

 AND A.ENTRY_USE_ID NOT LIKE 'DM%' AND D.SYSTEM_DEFINED = 'A'

GROUP BY D.BUSINESS_UNIT,

 D.CUST_ID, D.ITEM, D.ITEM_LINE, D.ACCOUNT, D.DEPTID,

 D.PRODUCT, D.SUB_ACCOUNT, D.PROJECT_ID, D.AFFILIATE,

 D.STATISTICS_CODE HAVING SUM(D.FOREIGN_AMOUNT) <> 0

 CREATE VIEW UFDW2DVL.PS_ITEM_DST_AR3_VW

 (BUSINESS_UNIT, CUST_ID, ITEM, ITEM_LINE, SEQ_NBR, ACCOUNT, DEPTID,

PRODUCT,

 SUB_ACCOUNT, PROJECT_ID , AFFILIATE, STATISTICS_CODE,

 DST_LINE_NET_ITEM) AS

 SELECT D.BUSINESS_UNIT, D.CUST_ID,

 D.ITEM, D.ITEM_LINE, MIN((D.ITEM_SEQ_NUM * 1000) +

 D.DST_SEQ_NUM), D.ACCOUNT, D.DEPTID, D.PRODUCT,

 D.SUB_ACCOUNT, D.PROJECT_ID, D.AFFILIATE, D.STATISTICS_CODE,

 SUM(D.FOREIGN_AMOUNT) FROM PS_ITEM_DST D , PS_ITEM_ACTIVITY

 A , PS_ENTRY_USE_L_TBL L , PS_PGG_ITEM_TAO I

 WHERE

 I.BUSINESS_UNIT = D.BUSINESS_UNIT AND I.CUST_ID = D.CUST_ID

 AND I.ITEM = D.ITEM AND I.ITEM_LINE = D.ITEM_LINE AND

 L.ENTRY_USE_ID = I.ENTRY_USE_ID AND L.DST_USE = 'AR' AND

 I.BAL_AMT <> 0 AND I.ENTRY_USE_ID <> 'DM-06' AND

 A.BUSINESS_UNIT = D.BUSINESS_UNIT AND A.CUST_ID = D.CUST_ID

 AND A.ITEM = D.ITEM AND A.ITEM_LINE = D.ITEM_LINE AND

 A.ITEM_SEQ_NUM = D.ITEM_SEQ_NUM AND A.ENTRY_USE_ID NOT LIKE

 'DM%' AND D.SYSTEM_DEFINED = 'A' GROUP BY D.BUSINESS_UNIT,

 D.CUST_ID, D.ITEM, D.ITEM_LINE, D.ACCOUNT, D.DEPTID,

 D.PRODUCT, D.SUB_ACCOUNT, D.PROJECT_ID, D.AFFILIATE,

 D.STATISTICS_CODE HAVING SUM(D.FOREIGN_AMOUNT) <> 0

BEFORE

 CREATE VIEW UFDW2DVL.PS_ITEM_DST_AR_VW

 (BUSINESS_UNIT, CUST_ID, ITEM, ITEM_LINE, SEQ_NBR, ACCOUNT, DEPTID,

PRODUCT,

 SUB_ACCOUNT, PROJECT_ID , AFFILIATE, STATISTICS_CODE,

 DST_LINE_NET_ITEM) AS

 select d.business_unit, d.cust_id, d.item, d.item_line, min(

(d.item_seq_num * 1000) +

 d.dst_seq_num), d.account, d.DEPTID, d.PRODUCT,

 d.SUB_ACCOUNT, d.PROJECT_ID, d.AFFILIATE, d.statistics_code,

 sum(d.foreign_amount) from ps_item_dst d, ps_item_activity

 a where a.business_unit = d.business_unit and a.cust_id =

d.cust_id and a.item = d.item and a.item_line = d.item_line

and a.item_seq_num = d.item_seq_num

 and a.entry_use_id not like 'DM%' and d.system_defined = 'A'

group by

d.business_unit, d.cust_id, d.item, d.item_line, d.account,

d.DEPTID, d.PRODUCT, d.SUB_ACCOUNT, d.PROJECT_ID,

d.AFFILIATE, d.statistics_code having sum(d.foreign_amount) <> 0

1. Adjusted PCTFREE AND FREEPAGE

2. Removed the SQL trace.

3. Removed the use of PS_ITEM and added the use of 2 temporary tables (PS_USR_OCTMP_ITEM and PS_USR_ODTMP_ITEM) that house open credits and debits, respectively.

4. Removed SQL code that performs a self-join to find the minimum ITEM. Found this to be unnecessary.

5. Incorporated the use of 2 COBOL programs that update the 2 new temporary tables. These programs used to update PS_ITEM.

6. Convert some “exists” into joins

Step: CRED_CAN

INSERT INTO PS_USR_PP_C1_TMP

 (PROCESS_INSTANCE, DEPOSIT_BU, DEPOSIT_ID, PAYMENT_SEQ_NUM,

BUSINESS_UNIT, CUST_ID, ITEM, ITEM_LINE, ALGORITHM_GROUP, ALGORITHM,

GROUP_ID, GROUP_SEQ_NUM,

 PP_PROC_FLAG, BAL_AMT, BAL_CURRENCY)

SELECT &BIND(PROCESS_INSTANCE), I.BUSINESS_UNIT, 'AUTO_MAINT', 0,

I.BUSINESS_UNIT, I.CUST_ID, I.ITEM, I.ITEM_LINE, 'AUTO_MAINT', 'KEMPER', '

', 0, '0', I.BAL_AMT, I.BAL_CURRENCY

FROM PS_ITEM I,

PS_SET_CNTRL_REC S, PS_PP_REQUEST R

WHERE R.PROCESS_INSTANCE = &BIND(PROCESS_INSTANCE)

AND R.PP_AUTO_MAINT_SW = 'Y'

AND S.SETID = &BIND(SETID)

AND S.RECNAME = 'PP_MET_TBL'

AND S.SETCNTRLVALUE = R.BUSINESS_UNIT

AND I.BUSINESS_UNIT = R.BUSINESS_UNIT

AND I.ITEM_STATUS = 'O' AND I.BAL_AMT < 0.00

 AND I.ITEM = (SELECT MIN(ITEM) FROM PS_ITEM T

 WHERE T.BUSINESS_UNIT = I.BUSINESS_UNIT AND

T.CUST_ID = I.CUST_ID

 AND T.ITEM_STATUS = 'O' AND T.BAL_AMT < 0.00

 AND I.ITEM_LINE = (SELECT MIN(ITEM_LINE) FROM PS_ITEM K

 WHERE K.BUSINESS_UNIT = I.BUSINESS_UNIT AND

K.CUST_ID = I.CUST_ID

 AND K.ITEM = I.ITEM

 AND K.ITEM_STATUS = 'O' AND K.BAL_AMT < 0.00))

------------------------------ altered version

Section: Kemper1

Step : CREDCAN2

INSERT INTO PS_USR_PP_C1_TMP

 (PROCESS_INSTANCE, DEPOSIT_BU, DEPOSIT_ID, PAYMENT_SEQ_NUM,

BUSINESS_UNIT, CUST_ID, ITEM, ITEM_LINE, ALGORITHM_GROUP, ALGORITHM,

GROUP_ID, GROUP_SEQ_NUM,

 PP_PROC_FLAG, BAL_AMT, BAL_CURRENCY)

SELECT &BIND(PROCESS_INSTANCE), I.BUSINESS_UNIT, 'AUTO_MAINT', 0,

I.BUSINESS_UNIT, I.CUST_ID, I.ITEM, I.ITEM_LINE, 'AUTO_MAINT', 'KEMPER', '

', 0, '0', I.BAL_AMT, I.BAL_CURRENCY

FROM PS_USR_OCTMP_ITEM I,

PS_SET_CNTRL_REC S, PS_PP_REQUEST R

WHERE R.PROCESS_INSTANCE = &BIND(PROCESS_INSTANCE)

AND R.PP_AUTO_MAINT_SW = 'Y'

AND S.SETID = &BIND(SETID)

AND S.RECNAME = 'PP_MET_TBL'

AND S.SETCNTRLVALUE = R.BUSINESS_UNIT

AND I.BUSINESS_UNIT = R.BUSINESS_UNIT

AND I.ITEM_STATUS = 'O'

 AND I.ITEM_LINE = (SELECT MIN(ITEM_LINE) FROM

PS_USR_OCTMP_ITEM K

 WHERE K.BUSINESS_UNIT = I.BUSINESS_UNIT AND

K.CUST_ID = I.CUST_ID

 AND K.ITEM = I.ITEM

 AND K.ITEM_STATUS = 'O')

1. * In most cases if it is the financials application the problem tables are PS_JRNL_LN, PS_JRNL_HDR, and PSTREE... something depending on how they have decided to separate their books.

2. We also found great success in forcing full table scans of small lookup tables in a complex query either by a hint or nulling (||'' or +0) in the where clause. Using the index of these small tables was killing us. We took a 9 hours process down to 15 minutes using this technique.

3. Upgrades. Creating temp tables in same ts was a probblem. Eith create in different TS of use Unload and Reload; Unload with changes in it.

4. Major performance gains…

BEFORE:

 UPDATE PS_PENDING_ITEM SET DST_BAL_ITEM = 'O' WHERE DST_BAL_ITEM <> 'O'

 AND EXISTS (SELECT 'X' FROM PS_PGG_REQUEST_TAO

WHERE REQUEST_NBR = 0.0 + 61

 AND GROUP_BU = PS_PENDING_ITEM.GROUP_BU

 AND GROUP_ID = PS_PENDING_ITEM.GROUP_ID

 AND (BUSINESS_UNIT = ' '

 OR (BUSINESS_UNIT = PS_PENDING_ITEM.BUSINESS_UNIT

 AND CUST_ID = PS_PENDING_ITEM.CUST_ID

 AND ITEM = PS_PENDING_ITEM.ITEM

 AND ITEM_LINE = PS_PENDING_ITEM.ITEM_LINE

 AND GROUP_SE _NUM = PS_PENDING_ITEM.GROUP_SEQ_NUM)))

AFTER (INFORMATION USEFUL IN FORMATTING NEW COBOL PGM):

SELECT

 GROUP_BU

 ,GROUP_ID

 ,BUSINESS_UNIT

 ,CUST_ID

 ,ITEM

 ,ITEM_LINE

 ,GROUP_SEQ_NUM

 FROM PS_PGG_REQUEST_TAO

WHERE REQUEST_NBR = 0.0 + 61

OPEN

LOOP TILL END

FETCH

 :GROUP_BU

 :GROUP_ID

 :BUSINESS_UNIT

 :CUST_ID

 :ITEM

 :ITEM_LINE

 :GROUP_SEQ_NUM

UPDATE PS_PENDING_ITEM A

 SET DST_BAL_ITEM = 'O'

 WHERE DST_BAL_ITEM <> 'O'

 AND GROUP_BU = :GROUP_BU

 AND GROUP_ID = :GROUP_ID

 AND BUSINESS_UNIT = ' '

 UPDATE PS_PENDING_ITEM A

 SET DST_BAL_ITEM = 'O'

 WHERE DST_BAL_ITEM <> 'O'

 AND GROUP_BU = :GROUP_BU

 AND GROUP_ID = :GROUP_ID

 AND BUSINESS_UNIT = :BUSINESS_UNIT

 AND CUST_ID = :CUST_ID

 AND ITEM = :ITEM

 AND ITEM_LINE = :ITEM_LINE

 AND GROUP_SE _NUM = :GROUP_SEQ_NUM

 END LOOP

 CLOSE CURSOR

1. 4 categories of tuning for DBA:

· 1) Review poorly performing SQL

· 2) Temp Table set-up (in which tablespaces?, Runstats with data loaded)

· 3) Space allocations (PRI, SEC, sort)

· 4) Tablespace set-up

· 4) Index- over 100 ideas (includes ideas on modifying order of view also)

2. Laura Summary

1. They created separate tablespaces for each of the tables in PeopleSoft. The main advantage to doing this was greater flexibility in running utilities, such as: runstats, reorg,

etc. when necessary.

2. They split related tables into several databases. He said this was for flexibility in running utilities, but I am not aware of why this would affect this.

3. He mentioned that PeopleSoft has work tables suffixed with either _TEMP or _TAO. Terry stated that these tables are
inserted to and then deleted from, so most of the time they have zero

rows in them at the end of the process. However, if you run a runstats when there are zero rows in

the table, it will preclude the use of an index. Therefore, it would be advised to load data to these tables and run a runstats before deleting the data. Then never run runstats again.

4. Terry said they use LOCKSIZE PAGE on the tables during the day, but

change it to LOCKSIZE TABLESPACE for batch. He also said they have had success implementing Uncommitted Reads inbatch.

5. He stated that the client needs to come up with an archiving strategy to keep the tables from growing too large.

6. They do reorgs once a week whether they need to or not just to be safe.

7. Terry said the worksheet build process is slow no matter what you do so be prepared for that. They see a median response time of about 30 seconds for this. On most everything else the response time is about three to five seconds.

8. They would only recommend changing code as a last resort.

9. Finally, Terry said there are some DB2 subsystem tuning parameters

that can be changed, but they have not exploited them as of yet. He said he could send me the document

they have if weget to that point. However, he recommended that we not use them unless PeopleSoft was the only application running on the DB2 subsystem.

More…

1. Reorg the production environment weekly. After the reorg, run a runstats against all of the tablespaces with the exception of the tablespace containing the temporary tables. Also, we need to run a reorg now, because I just loaded the data from $DEVAR into production and as far as I could tell it had not been reorged.

2. Load temporary tables with data and run runstats against them. Then never run runstats again. Another alternative strategy would be to just update the DB2 catalog statistics with the appropriate data.

3. Move large tables (more than 5000 pages) into its own tablespace.

4. Move all of the tables that are not being used into a "not used" tablespace.

5. Move all of the temporary tables into a "temporary" tablespace. These tables are prefixed with PSX_ or suffixed with either _TMP or TAO.

6. Move all static tables, like code tables which end in _TBL, into a "static" tablespace.

7. Move all of the sequentially read tables into a "sequentially" read tablespace.

8. Change the segsize parameter on all tables to 64 regardless of size.

9. Split the tablespaces into multiple databases as follows:

DKAR0001 - AR% tablespaces

DKAR0011 - AP% tablespaces

DKAR0021 - BI% tablespaces

DKAR0031 - FS% tablespaces

DKAR0041 - GL% tablespaces

DKAR0051 - IN% tablespaces

DKAR0061 - OM% tablespaces

DKAR0071 - PO% tablespaces

DKAR0081 - PS% tablespaces

DKAR0091 - PT% tablespaces

DKAR0101 - temporary tablespaces

DKAR0201 - static tablespaces

DKAR0301 - not used tablespaces

10. Assign bufferpools as outlined in Troy Coleman's document.

1. Implement the SETCNTRLVALUE change as outlined in the paper supplied to us by Bruce Giddings.

Ensure Indexes are being used

2. convert all indexes from Type 1 to Type 2,

3. try using Uncommitted Reads in batch.

Use 'currentdata(no)' bind option for greater concurrency

 5) bind plan/package goodies

 a) use 'currentdata(no)' for improved concurrencry

 b) use 'reopt(vars)' when host variables are used

 c) use 'keepdynamic(yes)' for dynamically executed statements

 d) use 'isolation(cs)' on plans for update/read unless

 you use 'ur' or 'rs' for good reason

 e) use 'acquire(use)' and 'release(deallocate)' for all plans

 f) do NOT use 'isolation(rr)' (everyone is a loser here)

I made the following changes you requested:

Input Message Size:
12288

Output Message Size:
4096

Note the default value for both was 0

placing the Centura started task in a higher performance group (in this case, a performance group with the priority of CICS QMF)

Please create new BP10 in the DB2P subsystem to be used by PeopleSoft AR system. We tested in the Test environment, and it should help performance. We will keep there mostly used Panels/Tables (not big ones). So we need 3,000 in virtual and 6,000 in hyper storage. We need it ASAP, because we would like to have Production environment created by 01/15.

The results of the "exists" coding change were a SUCCESS. The exact same

data rows

were selected before and after the coding change. ALSO, the run time went

down

by about 3 HOURS !!

CODING CHANGE MADE

INSERT INTO PS_USR_PP_D1_TMP

 (PROCESS_INSTANCE, DEPOSIT_BU, DEPOSIT_ID, PAYMENT_SEQ_NUM,

BUSINESS_UNIT, CUST_ID,

 ITEM, ITEM_LINE, ALGORITHM_GROUP, ALGORITHM, GROUP_ID, GROUP_SEQ_NUM,

 PP_PROC_FLAG, BAL_AMT, BAL_CURRENCY)

SELECT &BIND(PROCESS_INSTANCE), I.BUSINESS_UNIT, 'AUTO_MAINT', 0,

I.BUSINESS_UNIT, I.CUST_ID,

 I.ITEM, I.ITEM_LINE, 'AUTO_MAINT', 'KEMPER', ' ', 0, '0',

I.BAL_AMT, I.BAL_CURRENCY

FROM PS_ITEM I, PS_USR_PP_C1_TMP J

WHERE I.ITEM_STATUS = 'O'

AND J.BUSINESS_UNIT = I.BUSINESS_UNIT

AND J.CUST_ID = I.CUST_ID

AND J.ITEM = I.ITEM

AND J.BAL_AMT * -1 = I.BAL_AMT

AND J.PROCESS_INSTANCE = &BIND(PROCESS_INSTANCE))

 AND I.DUE_DT = (SELECT MIN(DUE_DT) FROM PS_ITEM K

 WHERE K.BUSINESS_UNIT = I.BUSINESS_UNIT

 AND K.CUST_ID = I.CUST_ID

 AND K.ITEM = I.ITEM

 AND K.BAL_AMT = I.BAL_AMT

 AND K.ITEM_STATUS = 'O')

AND I.ITEM_LINE = (SELECT MIN(ITEM_LINE) FROM PS_ITEM L

 WHERE L.BUSINESS_UNIT = I.BUSINESS_UNIT

 AND L.CUST_ID = I.CUST_ID

 AND L.ITEM = I.ITEM

 AND L.BAL_AMT = I.BAL_AMT

 AND L.DUE_DT = I.DUE_DT

 AND L.ITEM_STATUS = 'O')

The DB2 V5 numbers reflect the use of dynamic SQL caching. Results may vary depending on the cache hit ratio.

FS7 Online

Ref??? - Please refer to this report for specifics of hardware and software used.

Application

FS7

FS7

DB2 Version

V5

V5

Machine

9672-R34

9672-R34

Engines

3x42mips

3x42mips

Gateway

DB2 Connect

Centura

Benchmark

1 user

1 user

Database Size

Demo db

Demo db

Client

200/95

200/95

Date

Aug-97

Aug-97

Notes

#4

#5

E37BD200

 E37BC200

CPU secs used to run script
1

8.40

11.30

Elapsed time in secs to run script
2

100.00

106.00

% of cpu used
3

8.40

10.66

mip rating of engine
4

42.00

42.00

mips used
5

3.53

4.48

txns
6

17.00

17.00

txns/minute
7

10.20

9.62

avg cpu time per txn
8

0.49

0.66

9
TPM

+system

+system

overhead

overhead

1 user
10
0.2
0.07
0.09
0.09
0.11

500 user

100
34.59
44.59
46.53
56.53

1000 user

200
69.18
89.18
93.06
113.06

2000 user

400
138.35
178.35
186.12
226.12

4000 user

800
276.71
356.71
372.24
452.24

These results are actual mips used from a single-user. They have been extrapolated to multiple users using the formula documented in Appendix A.

Based on real load tests, they are accurate within +/- 20% which should be adequate for capacity planning

purposes

The TPM rate assumes one transaction per user per 5 minutes

The DB2 V5 numbers reflect the use of dynamic SQL caching. Results may vary depending on the cache hit ratio.

Buffer Pool size

This is a trade off between buffer hit ratios and system paging, and is dependent on the amount of memory on your machine and the nature of your application. You'd obviously like to keep your buffer hit ratios as high as possible, implying as large a bufferpool as possible, while at the same time minimizing system paging because of lack of real memory and the overhead of paging.

Peoplesoft batch processing such as payroll does a lot of sequential processing, so you will always be bringing new pages into the buffer pool. Most of these, however, will be asynchronous reads triggered by sequential prefetch. Even the largest possible bufferpool is not necessarily going to gain you a lot of performance improvement.

For online, you would like to see a buffer hit ratio in the 95% plus range. Separate the DB2 Catalog from your data and index buffer pools - you don’t want I/Os occurring on dynamic prepares

HR5 Payroll

Ref 1 - Database Manager Tuning Parameters

72000 employees

BP0: 10000 4K pages for Catalog and DSNDB07

BP1: 10000 4K pages for Indexes

BP2: 10000 4K pages for Data

Total bufferpool activity from DB2PM

Sheets
Calc
Conf

Getpages
3m
5m
8.7m

Sync reads
2k
30k
100k

Hit ratio

99%
99%
99%

Async reads
100k
872k 1.2m

Very little I/O activity indicates the buffer pools were more than adequate for this program

For the online HR5 benchmark, the 9672-R51 had 480MB Central, 32MB expanded

Logging Buffer Size

The frequencies in which log buffers are written to DASD are based on DSNZPARM WRTHRSH. The default value is 20. IBM recommends between 32 to 64. The larger the number the more likely DB2 will loose data if abnormally terminated

The default log output buffer (OUTBUFF) is 400K. A general recommendation is to use the maximum output buffer size of 4000K. This will improve over all system performance due to more logging occurring in memory.

. Your system administrator can report on the system checkpoint frequency by using an IBM utility

Removing EXISTS Clauses

Update Temp Cat Stats

UPDATE SYSIBM.SYSTABLES

 SET CARD = 55555,

 NPAGES = 5555

 WHERE NAME LIKE 'PS%TMP%'

 AND CREATOR = 'FSADMP';

 COMMIT;

 UPDATE SYSIBM.SYSINDEXES

 SET NLEAF = 5555,

 FULLKEYCARD = 55555,

 FIRSTKEYCARD = 555,

 NLEVELS = 3

 WHERE NAME LIKE 'PS%TMP%'

 AND CREATOR = 'FSADMP';

 COMMIT;

 UPDATE SYSIBM.SYSTABLES

 SET CARD = 55555,

 NPAGES = 5555

 WHERE NAME LIKE 'PS%WRK%'

 AND CREATOR = 'FSADMP';

 COMMIT;

 UPDATE SYSIBM.SYSINDEXES

 SET NLEAF = 5555,

 FULLKEYCARD = 55555,

 FIRSTKEYCARD = 555,

 NLEVELS = 3

 WHERE NAME LIKE 'PS%WRK%'

 AND CREATOR = 'FSADMP';

 COMMIT;

 UPDATE SYSIBM.SYSTABLES

 SET CARD = 55555,

 NPAGES = 5555

 WHERE NAME LIKE 'PS%TAO%'

 AND CREATOR = 'FSADMP';

 COMMIT;

 UPDATE SYSIBM.SYSINDEXES

 SET NLEAF = 5555,

 FULLKEYCARD = 55555,

 FIRSTKEYCARD = 555,

 NLEVELS = 3

 WHERE NAME LIKE 'PS%TAO%'

 AND CREATOR = 'FSADMP';

 COMMIT;

 UPDATE SYSIBM.SYSTABLES

 SET CARD = 55555,

 NPAGES = 5555

 WHERE NAME LIKE 'PS%TEMP%'

 AND CREATOR = 'FSADMP';

 COMMIT;

 UPDATE SYSIBM.SYSINDEXES

 SET NLEAF = 5555,

 FULLKEYCARD = 55555,

 FIRSTKEYCARD = 555,

 NLEVELS = 3

 WHERE NAME LIKE 'PS%TEMP%'

 AND CREATOR = 'FSADMP';

 COMMIT;

/*

